
The Software Supply Chain Integrity Framework

Defining Risks and Responsibilities for
Securing Software in the Global Supply Chain

July 21, 2009

Editor
Stacy Simpson, SAFECode

Contributors
Dan Reddy, EMC
Brad Minnis, Juniper Networks
Chris Fagan, Microsoft Corp.
Cheri McGuire, Microsoft Corp.
Paul Nicholas, Microsoft Corp.
Diego Baldini, Nokia
Gunter Bitz, SAP
Yuecel Karabulut, SAP
Gary Phillips, Symantec

ii

 Table of Contents
 Introduction 1

 Defining Software Integrity 2

 Identifying the Challenge to Software Integrity 4

 Describing the Software Supply Chain 6

 Principles for Designing Software Integrity Controls 10

 Next Steps 11

1

Introduction
Commercial software underpins the informa-

tion technology infrastructure that businesses,

governments and critical infrastructure

owners and operators rely upon for even

their most vital operations. For that reason,

enterprise customers are rightfully concerned

about the security of commercial software

and the potential for its exploitation by

those seeking to maliciously disrupt, influ-

ence or take advantage of their operations.

Historically, commercial software was

developed at a central location. However,

as market demands for innovation and

competitiveness have increased, a more

distributed approach to software develop-

ment is evolving as commercial software

vendors expand to serve international

markets and seek engineering skills and

numbers wherever they reside globally.

Though it is generally agreed that limit-

ing the use of global resources for software

development is not practical in today’s

market environment, the increased distri-

bution of development activities globally

does raise questions about what additional

product security and commercial brand risks

are introduced, how these risks should be

assessed, and what proactive measures

can minimize their occurrence. Given the

reliance of businesses, governments and

critical infrastructure owners on commercial

software, these questions are of interest

to suppliers and customers alike and have

recently been aggregated under the label

of “software supply chain integrity.”

Yet, the concept of software supply chain

integrity and its key components of “soft-

ware integrity” and “software supply chain”

are not clearly defined, creating significant

challenges for customers and suppliers work-

ing to identify, compare, communicate and

evaluate software integrity best practices.

Recognizing this gap, SAFECode is work-

ing to address the issue of software supply

chain integrity from a software engineering

perspective. Under this effort, SAFECode

will identify the threats, assess the risks,

share its members’ current practices for

mitigating those corresponding risks, and

develop process guidelines that other soft-

ware companies should consider adopting

to protect the integrity of the software they

produce through the global supply chain.

This paper, the first in a series, will assess

software supply chain integrity in the con-

text of software engineering, providing

a framework and common taxonomy for

evaluating the associated risks and defining

the industry’s role in addressing them. This

framework will serve as the foundation for

subsequent work aimed at describing and

analyzing software integrity best practices.

2

Defining Software Integrity
Software integrity is an element of software

assurance. SAFECode defines Software

Assurance as “confidence that software,

hardware and services are free from inten-

tional and unintentional vulnerabilities and

that the software functions as intended.”1

Software assurance is most frequently dis-

cussed in the context of ensuring that code

itself is more secure through the repeatable

application of secure software development

practices. However, while there has been a

growing and appropriate focus on eliminat-

ing software vulnerabilities through secure

development practices, this represents only

one aspect of software assurance. Another

key consideration for customers and software

suppliers is the security of the processes

used to handle software components during

their sourcing, development and distribution

since a variety of potential attack vectors

exist throughout the software lifecycle.

To help others in the industry initiate or

improve their own secure development

programs, SAFECode has published

“Fundamental Practices for Secure Soft-

ware Development: A Guide to the Most

Effective Secure Development Practices

in Use Today.” Based on an analysis

of the individual software assurance

efforts of SAFECode members, the paper

outlines a core set of secure develop-

ment practices that can be applied

across diverse development environ-

ments to improve software security.

The brief and highly actionable paper

describes each identified security

practice across the software develop-

ment lifecycle – Requirements, Design,

Programming, Testing, Code Handling

and Documentation – and offers imple-

mentation advice based on the real-world

experiences of SAFECode members.

To obtain a free copy of the paper,

visit www.safecode.org.

1. SAFECode, “Software Assurance: An Overview of Current Best Practices,” February 2008.

3

Integrity

Authenticity Security

ASSURANCE

In practice, software assurance involves

a shared responsibility among suppli-

ers (synonymous with vendors), service

and/or solution providers, and custom-

ers encompassing three areas:

Security: • Security threats are anticipated

and addressed in the software’s design,

development and testing. This requires a

focus on both quality aspects (e.g., “free

from buffer overflows”) and functional

requirements (e.g., “passport numbers

must be encrypted in the database”).

Authenticity: • The software is not

counterfeit and customers are able to

confirm that they have the real thing.

Integrity: • The processes for sourcing,

creating and delivering software contain

controls to enhance confidence that the

software functions as the supplier intended.

While the delivery of secure software products

requires that all three elements of software

assurance be addressed, the focus of this

paper is on software integrity practices – the

collection of processes and controls that

enable a supplier to deliver a product to

customers that is uncompromised, thereby

containing only what the supplier intends.

Software integrity practices address the secu-

rity of the processes used to handle software

components during their sourcing, develop-

ment and delivery. In this way, they differ

from (and complement) secure development

practices that improve the security charac-

teristics of the code comprising the software

components. Software integrity practices

are essential to minimizing the risk of soft-

ware tampering in the global supply chain.

Figure 1: The three elements of software assurance

4

Identifying the Challenge
to Software Integrity
Governments, businesses and consumers

purchase IT solutions (systems, products

or services) that are a complex collection

of inter-related components assembled

from hardware, software, networks, cloud

services and outsourced operations.

Throughout an IT solution’s lifecycle, which

can extend over more than a decade,

many individuals have legitimate access

to its components and operations.

As the software industry has become increas-

ingly globalized, a concern has risen over

the possibility that an IT solution could be

compromised by the intentional insertion of

malicious code into the solution’s software

during its development or maintenance.

This type of attack is often referred to as a

supply chain attack. A supply chain attack

can be directed at any category of software,

including custom software, software deliver-

ing a cloud service, a software product, or

software embedded in a hardware device.

Software in any of these categories is

often packaged as a collection of files. To

be successful, a software supply chain

attack must result in either: a) the modi-

fication of an existing software file(s); or,

b) the insertion of an additional file(s)

into the collection of software files.

Reports2 that have considered supply chain

attacks have concluded that: 1) there is no

one way to defend against all the potential

attack vectors a motivated attacker may iden-

tify; 2) focusing on the place where software is

developed is less useful for improving security

than focusing on the process by which soft-

ware is produced and tested; and 3) there are

circumstances when the insertion of malicious

code would be almost impossible to detect.

It is important to recognize that while there

is a risk that someone with malicious intent

could attack software during its develop-

ment, experts3 have concluded that supply

chain attacks are not the most likely attack

vector. For example, the practice of hack-

ers or other malicious actors finding and

exploiting existing vulnerabilities remains

the most common method of attack.

2. “Mission Impact of Foreign Influence on DoD Software,” U.S. Defense Science Board, September 2007. “Foreign Influence on Software: Risk and
Recourse,” Center for Strategic and International Studies, March 2007. “Framework for Lifecycle Risk Mitigation For National Security Systems in the Era
of Globalization,” U.S. Committee on National Security Systems, November 2006.

3. “Mission Impact of Foreign Influence on DoD Software,” U.S. Defense Science Board, September 2007. “Foreign Influence on Software: Risk and
Recourse,” Center for Strategic and International Studies, March 2007.

5

However, the fact that a risk does exist

requires preventive action. While individual

software companies have taken steps to

assure the integrity of their own supply

chains, there is currently no framework or

shared taxonomy through which the soft-

ware industry can collectively identify and

develop best practices to address software

supply chain threats to software integrity.

Further, the software supplier has a dual

challenge. As the vendor offering a product,

the customer often views the supplier as

responsible for all the offering’s compo-

nents. That supplier is also an acquirer of

software components. As such, a supplier

must ascertain the integrity (along with

authenticity and security) of both the soft-

ware components they build and those that

they acquire or use to be well-positioned to

assert integrity claims for their product.

6

Describing the Software
Supply Chain
Sophisticated IT solutions have much in

common with other engineering undertakings.

Each IT solution is a collection of compo-

nents. Each component or its parts can be

a) developed by its supplier or on that sup-

plier’s behalf by their subcontractors; or b)

licensed to the supplier by another vendor

or obtained from Open Source repositories;

or c) acquired outright by the supplier.

However, this complexity of components

within components can be organized. In the

physical world many industries create com-

plex products that contain components from

multiple sources. Processes in the manufactur-

ing of physical goods have two parallels that

can be adopted in the cyber world. One is the

use of a Bill of Materials (BOM) to organize

the hierarchy of product components. The

other is the use of supply chain management

processes, which describe the business activi-

ties associated with satisfying a customer’s

demand spanning the range from the sup-

plier’s supplier to the customer’s customer.

By recognizing and adapting techniques pio-

neered for the physical world, IT suppliers can

identify natural control points within software

supply chains. To identify these points, con-

sider that each software supplier has three

links of the supply chain. For these three

links each IT supplier takes similar actions:

Supplier Sourcing: 1. Select the suppliers,

establish the specification for the sup-

plier’s deliverables, and receive software/

hardware deliverables from the suppliers;

Product Development and Testing: 2.

Build, assemble, integrate and test com-

ponents and finalize for delivery; and,

Product Delivery: 3. Deliver and

maintain their product compo-

nents to their customer.

Now consider that delivered software is just

one component of a larger IT solution and

each software supplier is only one vendor in

a complex chain of suppliers and systems

integrators. Customer relationships extend

even beyond the traditional system integrators

since some “acquirers” implement systems

as solutions for other end users. As such, the

software supply chain is only one part of a

larger, more complex IT solution supply chain.

Supplier
Sourcing
• Procurement

Product Development
and Testing
• Environment
• Personnel
• Software Development

Product
Delivery
• Distribution
• Maintenance

Figure 2: Each supplier in the software sup-
ply chain manages three sets of controls

7

Supplier
Sourcing

Product
Dev &
Testing

Product
Delivery

Supplier
Sourcing

Product
Dev &
Testing

Product
Delivery

Supplier
Sourcing

Product
Dev &
Testing

Product
Delivery

Supplier
Sourcing

Product
Dev &
Testing

Product
Delivery

Customer

Tier 1 Software
Supplier

Tier 2 Supplier

Tier n Supplier

Integrator

Project Lifecycles

Software Supply Chain Staircase

Acceptance Test

Release Test

Figuratively, an IT solution supply chain

resembles a collection of staircases. Each

staircase aggregates smaller useful com-

ponents from different suppliers into an

ever-greater collection of components

until ultimately sufficient IT components

have been assembled to meet the cus-

tomer’s business requirements.

Figure 3 illustrates the software supply chain

as one of these staircases, where each step

holds a different supplier. Between each

step is a step-up. The step-up represents

the transmission of software compo-

nents from a supplier to its customer.

Components move along this “staircase”

supply chain as they are handed off from

one supplier to the next. At each step a sup-

plier controls three links in the supply chain:

a) goods received from suppliers; b) their

product production; and c) what is delivered

to their customers. Suppliers apply integrity

controls at each link. For example, a supplier

can conduct acceptance tests on components

received from their suppliers, and release

tests on the components they deliver to their

customer. That means that each transition

of custody along the chain of suppliers is

an opportunity to preserve code integrity.

Figure 3: The software supply chain
resembles a staircase, where each
step holds a different supplier.

8

The effective application of integrity

controls requires that each individual

supplier understand and manage:

The components that are integrated into •

their products. This includes identifying

their suppliers and the related parties

including, for example, software from

original equipment manufacturers (OEMs),

software built to specification by external

contractors, or sourced from reposito-

ries of Open Source Software (OSS);

Their internal processes for control-•

ling access to software components

during development, integration,

testing and release; and,

The channels they use to •

receive components from suppli-

ers and to deliver products.

Within a supplier’s organization, operations

for supplier sourcing, product development

and testing, and product delivery coexist

with other business operations such as sales,

marketing, legal and IT. The procedures a

supplier uses for internal collaboration, distri-

bution and other important business processes

outside product development and testing

can impact a product’s integrity. Concern

about personnel with malicious intent is not

confined to only employees at numerous loca-

tions, but extends across all members of the

workforce including that of tiered suppliers.

Other factors must come into play to address

integrity. The type of physical and IT envi-

ronment supporting product development

and testing has a bearing on the likelihood

of a product’s integrity being compromised.

For instance, are the facilities where code is

developed secure? Is the data center where

code is stored secure? Are communica-

tions secure between distributed teams?

Within a supplier, different business functions

are performed by different staff, and these

personnel require different levels of access to

corporate assets. Access to corporate assets is

based on the security principle of separation-

of-duties. This principle should be similarly

applied to access to development assets by a

supplier’s staff engaged in supplier sourcing,

product development and testing, and product

delivery. Access to development assets can

be restricted based on the activities a staff

member performs in the development process.

Additionally, suppliers control: a) how they

procure code from their suppliers; b) how code

once delivered is screened and tested; and

c) how code is inserted and tracked through-

out their development, testing and delivery

processes. While the effective application of

9

these controls has a direct impact on software

integrity, it should be recognized that leading

software suppliers also establish and maintain

these controls for sound engineering reasons

since the production of commercial software

products is an industrial-strength process.

To assist customers, suppliers provide

mechanisms to enable validation of a

product’s authenticity, and to confirm that

a product has not been tampered with

before it reaches them. These may include

certificates of authenticity, online product

registration and validation, and product

packaging designed to be tamper-resistant.

Having recognized these issues, suppliers

have controls over their software products

when components are received from their

suppliers, created through their product

development process, and passed on to their

customers. It is this collection of controls

that enable a supplier to assure that the

software components they use are known and

properly protected along the supply chain.

10

Principles for Designing
Software Integrity Controls
Viewing potential malicious acts in the

proper context is essential. Suppliers are

aware of threats to their products and are,

consequently, extremely protective of their

code base – not only is the integrity of their

products at stake but also their highly valu-

able intellectual property and brand. As

such, suppliers have significant experience

implementing powerful management, policy

and technical controls that reduce the risk

that their code can be compromised. How-

ever, while there are established practices to

mitigate the potential for malicious activity as

products are built, analyzing these efforts in

the context of providing assurance of integ-

rity is an emerging discipline. As a result,

there is a lack of common understanding

regarding what these efforts entail, where

they are best applied in the context of a

software supply chain, and how collectively

they raise the assurance of an IT solution.

Within SAFECode’s software supply chain

integrity framework, software supply chain

integrity controls address the access, storage

and handling of development assets through-

out the key links in the software supply

chain – supplier sourcing, product develop-

ment and testing, and product delivery. Within

a supplier’s organization these controls exist in

the context of other IT functions such as

backup and recovery, business continuity

services, physical and network security, and

configuration management systems.

Software supply chain integrity con-

trols derive from established security

and integrity principles:

Chain of Custody: • The confidence that

each change and handoff made during the

source code’s lifetime is authorized, trans-

parent and verifiable.

Least Privilege Access: • Personnel can

access critical data with only the privileges

needed to do their jobs.

Separation of Duties: • Personnel cannot

unilaterally change data, nor unilaterally

control the development process.

Tamper Resistance and Evidence: •

Attempts to tamper are obstructed, and

when they occur they are evident and

reversible.

Persistent Protection: • Critical data is

protected in ways that remain effective

even if removed from the development

location.

Compliance Management: • The success

of the protections can be continually and

independently confirmed.

Code Testing and Verification: • Methods

for code inspection are applied and suspi-

cious code is detected.

To be effective in today’s complex global

supply chains, software integrity processes

and controls must be designed to be inde-

pendent of geography, accommodate diverse

sources of software components, and extend

from a vendor’s suppliers to its customers.

11

Next Steps
The complexities and interdependencies of the

IT ecosystem require software suppliers to

not only be able to demonstrate the security

of products they produce, but also evaluate

the integrity of products they acquire and

use. For this reason, every software supplier

has a significant stake in the identifica-

tion, communication and evaluation of best

practices for ensuring software integrity. The

challenge is to create practical but effective

methods that build on a broad understand-

ing of the dependencies and threats along

the complex software supply chain. Ulti-

mately this should lead to greater confidence

through integrity checks incorporated in

a defined secure development lifecycle.

While individual software companies have

integrity assurance programs in place, there

has been little industry-led effort to identify

and share best practices for implement-

ing the integrity controls described in this

framework or to provide customers with

more clarity into how the industry is address-

ing this issue. This is a critical gap that

must be addressed by the software indus-

try in order to continue to meet customer

demands for both security and innovation.

To meet this important industry need,

SAFECode will build upon this framework

for software supply chain integrity with a

focused effort to identify and analyze the

most effective software integrity practices

that its member companies use to help

assure the integrity of their software. We

will publish our findings later this year to

extend these practices across the industry

and provide customers with additional insight

into how to view and evaluate the processes

by which software integrity is achieved.

Though the focus of this immediate work is

on the responsibilities of software suppliers,

it should be noted that systems integrators

and customers also play roles in the assur-

ance of software in IT solutions. The proper

execution of activities such as integration,

configuration and implementation are crucial

to the integrity of an overall IT system. For

this reason, SAFECode will work with sup-

pliers, integrators and customers to adopt

a shared framework that extends software

integrity across “systems of systems.”

About SAFECode
The Software Assurance Forum for Excellence

in Code (SAFECode) is a non-profit organiza-

tion exclusively dedicated to increasing trust

in information and communications technology

products and services through the advancement

of effective software assurance methods. SAFE-

Code is a global, industry-led effort to identify

and promote best practices for developing and

delivering more secure and reliable software,

hardware and services. Its members include EMC

Corporation, Juniper Networks, Inc., Microsoft

Corp., Nokia, SAP AG and Symantec Corp. For

more information, please visit www.safecode.org.

© 2009 Software Assurance Forum for Excellence in Code (SAFECode)

(p) 703.812.9199

(f) 703.812.9350

(email) stacy@safecode.org

www.safecode.org

SAFECode

2101 Wilson Boulevard

Suite 1000

Arlington, VA 22201

